
Election Verifiability Revisited: Automated Security Proofs and
Attacks on Helios and Belenios

Sevdenur Baloglu1, Sergiu Bursuc1, Sjouke Mauw2, Jun Pang2

1 SnT, University of Luxembourg
2 DCS, University of Luxembourg

E-mail: sevdenur.baloglu@uni.lu

IEEE CSF’21, June 22

1 / 25

Introduction

Traditional Voting Electronic Voting

R paper ballots
e-voting−−−−→ qµ electronic ballots

É voting booths
e-voting−−−−→ § voting platforms

ö ballot boxes
e-voting−−−−→ � voting server

w adversary has
e-voting−−−−→ w adversary has

limited corruption abilities extended corruption abilities

2 / 25

Election Verifiability

Electronic voting protocols should be verifiable:

• by voters to ensure their vote is counted in the final tally,

• by anybody to ensure the final outcome reflects the intention of eligible voters.

A system satisfying those is called end-to-end verifiable.

Our focus: Formal verification of election verifiability

3 / 25

Previous Work on formal verification of election verifiability

• S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in electronic voting
protocols,” in ESORICS’10.

• V. Cortier, F. Eigner, S. Kremer, M. Maffei, and C. Wiedling, “Type-based
verification of electronic voting protocols,” in POST’15.

• V. Cortier, A. Filipiak, and J. Lallemand, “BeleniosVS: Secrecy and verifiability
against a corrupted voting device,” in IEEE CSF’19.

We propose an extension of Cortier et al. model: more general and covering new
features desired in practice.

4 / 25

Limitations and Contributions

Features Cortier et al. model Our model

automated verification 3 3

soundness 3 3

general protocols and corruption scenarios 7 3

revoting 7 3

clash attacks 7 3

dynamic corruption 7 3

quantum-resistant protocols 7 7

We apply our definition to various corruption scenarios and verification procedures in
Helios and Belenios, and we find new attacks.

5 / 25

Modeling protocols in Tamarin

Tamarin is based on multiset rewriting rules:

rule : [Premise]− [Action]→ [Conclusion],

where Premise, Action and Conclusion are sets of facts specifying terms.

6 / 25

Verifying protocols in Tamarin

Tamarin is based on multiset rewriting rules:

rule : [Premise]− [Action]→ [Conclusion],

where Premise, Action and Conclusion are sets of facts.

• S : the set of rules specifying the protocol,

• Φ : the formula specifying the desired property based on action facts.

Verification: S |= Φ

7 / 25

E-voting Events as Action Facts

Tamarin is based on multiset rewriting rules:

rule : [Premise]− [Action]→ [Conclusion],

where Premise, Action and Conclusion are sets of facts.

We use action facts to record events:

• BBreg(cr): eligible public credential

• Vote(id, cr, v): the vote is cast by the voter

• Verified(id, cr, v): the vote is verified by the voter

• BBtally(cr, b): the ballot is tallied for cr

• Corr(id, cr): corrupted voter

8 / 25

End-to-end Election Verifiability

Φ�E2E = Φiv ∧ Φeli ∧ Φcl ∧ Φ�res

Φiv : Individual verification implies the corresponding vote is tallied.

Φeli : Ballots correspond to eligible credentials.

Φcl : Individual verification by distinct voters implies distinct public credentials.

Φ�
res : Tallied ballots for honest voters cannot come from the adversary.

Φ•
res : honest voters ≡ not corrupted

Φ◦
res : honest voters ≡ (not corrupted) ∧ (verify their ballot)

9 / 25

End-to-end Election Verifiability

Φ�E2E = Φiv ∧ Φeli ∧ Φcl ∧ Φ�res

Φiv : Individual verification implies the corresponding vote is tallied.

Φeli : Ballots correspond to eligible credentials.

Φcl : Individual verification by distinct voters implies distinct public credentials.

Φ�
res : Tallied ballots for honest voters cannot come from the adversary.

Φ•
res : honest voters ≡ not corrupted

Φ◦
res : honest voters ≡ (not corrupted) ∧ (verify their ballot)

10 / 25

Election Verifiability Definition

Φ�E2E = Φiv ∧ Φeli ∧ Φcl ∧ Φ�res

Φiv : Individual verification implies the corresponding vote is tallied:

Verified(id, cr, v) ∧ Ω(id, cr, v) ∧ BBtally(cr, b) =⇒ v = open(b)

Ω(id, cr, v): captures revoting policy.

Φeli : Ballots correspond to eligible credentials:

Verified(id, cr, v) ∨ BBtally(cr, b) =⇒ BBreg(cr)

Φcl : Individual verification by distinct voters implies distinct public credentials:

Verified(id, cr, v) ∧ Verified(id′, cr, v′) =⇒ id = id′

Φ�res : Tallied ballots for honest voters cannot come from the adversary:

BBtally(cr, b) =⇒ (Vote(id, cr, v) ∧ v = open(b)) ∨ Φ�adv(cr)

11 / 25

Election Verifiability Definition

Φ�E2E = Φiv ∧ Φeli ∧ Φcl ∧ Φ�res

Φiv : Individual verification implies the corresponding vote is tallied:

Verified(id, cr, v) ∧ Ω(id, cr, v) ∧ BBtally(cr, b) =⇒ v = open(b)

Ω(id, cr, v): captures revoting policy.

Φeli : Ballots correspond to eligible credentials:

Verified(id, cr, v) ∨ BBtally(cr, b) =⇒ BBreg(cr)

Φcl : Individual verification by distinct voters implies distinct public credentials:

Verified(id, cr, v) ∧ Verified(id′, cr, v′) =⇒ id = id′

Φ�res : Tallied ballots for honest voters cannot come from the adversary:

BBtally(cr, b) =⇒ (Vote(id, cr, v) ∧ v = open(b)) ∨ Φ�adv(cr)

12 / 25

Protocol Specification

An e-voting protocol specification S = (P,V,A), where

• P : the voting protocol procedures,

• V : the individual verification procedures,

• A : the corruption abilities of adversary.

S satisfies symbolic election verifiability if and only if S |= Φ�
E2E.

13 / 25

Helios

14 / 25

Helios and Belenios

• Main limitation of Helios:

• Corrupted server can stuff ballots.

• Main addition of Belenios:

• Belenios has additional signature mechanism.

• Registrar generates a signature key pair for each eligible voter.

• Trust is distributed between registrar and voting server.

15 / 25

Belenios

16 / 25

Individual Verification and Adversary

Individual Verifications

V1 last ballot anytime

V2 all ballots anytime

V3 last ballot in tally phase

V4 empty ballot in tally phase

Corruption Scenarios

A1 trustees and voters

A2 trustees, voters and server

A3 trustees, voters and registrar

A4 trustees, voters, server and registrar

A5
trustees, voters, server, registrar

and voting platform

17 / 25

Verification Results obtained by Tamarin

Helios Belenios

Vi/Aj A1 A2 A4 A5 Vi/Aj A1 A2 A3 A4 A5

V1 3 7 7 7 V1 7 7 7 7 ?

V3 3 3 3 7 V3 3 3 3 3 7

Individual Verifications

V1 last ballot anytime

V2 all ballots anytime

V3 last ballot in tally phase

V4 empty ballot in tally phase

18 / 25

Verification Results obtained by Tamarin

Helios Belenios

Vi/Aj A1 A2 A4 A5 Vi/Aj A1 A2 A3 A4 A5

V1 3 7 7 7 V1 7 7 7 7 ?∗

V3 3 3 3 7 V3 3 3 3 3 7

Individual Verifications

V1 last ballot anytime

V2 all ballots anytime

V3 last ballot in tally phase

V4 empty ballot in tally phase

19 / 25

Clash Attacks against Helios

Clash attacks proposed by:

• R. Küsters, T. Truderung, and A. Vogt, “Clash attacks on the verifiability of
e-voting systems,” in IEEE S&P’12.

is mounted by clash on public credentials when the server and voting platforms are
corrupted.

We show that it is not necessary to corrupt voting platforms, if

• revoting is allowed,

• voters verify their ballots anytime.

We discover this based on the property Φcl with Tamarin.

20 / 25

Clash Attack by corrupted server against Helios

21 / 25

Attack on Individual Verifiability against Belenios

Belenios should be secure against ballot stuffing with corrupted registrar:

• The voting server verifies passwords, and checks the consistency on the logs.

However, we find clash attack (Φcl) and attacks against individual verifiability (Φiv)
and result integrity (Φ•

res, Φ◦
res):

Φiv : If voters verify the last ballot they cast, it should be counted.

22 / 25

Attack on Individual Verifiability against Belenios

23 / 25

Bridging the gap between practice and theory

24 / 25

Thank you for listening!

25 / 25

